An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning

연세대학교 컴퓨터과학과 김휘군

과제명: loT 환경을 위한 고성능 플래시 메모리 스토리지 기반 인메모리 분산 DBMS 연구개발

과제번호: 2017-0-00477

목록

- 1. Introduction
- 2. System Overview
 - 1) Offline Training
 - 2) Online Tuning
- 3. Reinforcement Learning
 - 1) DDPG
 - 2) Agent, Environment, State, Reward, Action
- 4. Experiment
 - 1) Setup
 - 2) Result and Graph
- 5. Git Code 실행
- 6. Appendix

1. Introduction

Introduction - Problem

- ✓ DBMS: Database management system (Mysql, RocksDB, Redis)
- ✓ DBA: Database administrator
- ✓ CDB: Cloud database

 $\checkmark\,$ Every user needs to the database for better performance

Introduction - Solution

- ✓ DBMS configuration tuning:
 - Search-based methods (BestConfig)
 - Tuning based on certain principles
 - Limitations
 - 1. Spend a great amount of time
 - 2. Does not use previous knowledges
 - Learning-based methods (OtterTune)
 - Use machine-learning techniques to tuning
 - Limitations
 - 1. Pipelined learning model \rightarrow not in an end-to-end manner
 - 2. Rely on large-scale high-quality training samples
 - 3. A large number of knobs \rightarrow high-dimensional continuous space
 - 4. Users change the hardware configurations often

CDBTune

- ✓ An end-to-end automatic cloud database tuning system CDBTune using deep reinforcement learning
 - 1. End-to-end automatic database tuning system
 - 2. Try-and-error manner with a limited number of samples
 - 3. An effective reward function
 - 4. Use DDPG to find optimal configurations in high-dimensional continuous space
 - 5. A good adaptability (different workload, hardware)

2. System Overview

System Overview

- ✔ CDBTune 의 큰 두개의 과정
 - ✓ Offline Training
 - ✓ train.py 파일 → Sysbench 로 workload 실행
 - $\checkmark\,$ Online Tuning
 - ✓ evaluate.py → Sysbench 로 workload 실행
- ✓ CDBTune for ADDB ???
 - ✓ Offline Training
 - ✓ train.py 파일 → db_bench (RocksDB) or memtier bench (Redis) 로 workload 실행
 - $\checkmark\,$ Online Tuning
 - ✓ evaluate.py → db_bench (RocksDB) or memtier bench (Redis) 로 workload 실행

CDBTune

✓ MySQL, MongoDB, PostgreSQL에 적용

✓ TencentDB for Redis 있음

✓ TencentDB for RocksDB 없음

🔗 Tencent Cloud		Search	Q 🔇 Intl-English - Console
Products Solutions Pricing	Documentation - Support - Partners Customer Success	; E\ >	G Contact Us Log In Sign up
Compute Storage Database TencentDB Container	Search all products TencentDB for MySQL A reliable, scalable database hosting service with excellent performance TDSQL for MySQL	Q 2	Recommended Links Serverless Cloud Function now available in Frankfurt region 2021-03-17
CDN & Acceleration Serverless Domains & Websites Networking	A high performing shard-enabled distributed database highly compatible TencentDB for DBbrain A cloud database autonomous service for database performance, securi eptimization TencentDB for Redis A Redis-compatible elastic caching and storage service	with MySQL	Tencent Cloud Supports Japan's Cloud Gaming Platform "OOParts" to Win the Game 2021-03-15
Management Tools Big Data Middleware Communication	TencentDB for MongoDB A stable, secure and high-performance document database TencentDB for MariaDB Financial-grade, community-driven, and open-source database based on	TDSQL	Tencent Placed in Gartner 2021 Magic Quadrant for Cloud Al Developer Services 2021-03-09
Internet of Things AI Video Services	A database-orientated data migration, cross-instance data synchronizati data update subscription service TencentDB for PostgreSQL A powerful database ideal for handling complex SQL processing in OLTP	on and incremental	
Developer Tools Game Services	TencentDB for TcaplusDB A high-performance distributed NoSQL data storage service TencentDB for Tendic		

System Overview - Offline Training

- ✓ Training data 를 통하여 model 을 pre-training
- ✓ Training data:
 - Quadruple: <q, a, s, r>
 - q: a set of query workload (i.e., SQL queries)
 - *a:* a set of knobs as well as their values when processing *q*
 - *s:* the database state (which is a set of 63 metrics) when processing *q*
 - *r:* the performance when processing *q* (including throughput and latency)
 - > Collected metrics and knobs data will be stored in the **memory pool**
- ✓ Training model:
 - Deep RL as the training model
 - Try-and-error strategy → local optimum에 빠질 확률 낮춤Offline Training (train.py)

System Overview - Offline Training

- \checkmark Training data generation:
 - 1. Cold start:
 - Use standard workload testing tools (i.e., Sysbench) to generate a set of query workloads q
 - For each *q*, execute it on CDB and get the quadruple
 - 2. Incremental training:
 - 추후 CDBTune 사용함에 따라, 사용자의 tuning request도 하나의 experience 로 간주하여, CDBTune 을 강화하고 정확도를 높여준다

System Overview - Online Tuning

✔ 과정:

- 1. 150s 동안 user의 query workload q 수집.
- 2. Get current knob configuration a
- 3. Execute the query workload in CDB to generate the current state *s* and performance *r*
- 4. Offline training 에서 얻은 model로 online tuning을 실행
- 5. Best performance를 가져온 knobs 를 user에게 추천
- 6. Update the RL model / memory pool
- ✓ Online tuning과 Offline training 차이점:
 - 1. Replay the user's current workload \rightarrow fine-tune the pre-trained model
 - 2. User의 요구하는 성능 도달 or maximum step에 도달하면 tuning 이 끝난다

- ✓ Workload generator
 - Generating the standard workload testing
 - 초반에 데이터가 적으므로, Sysbench / TPC-MySQL과 같은 standard workload testing tool과 RL의 tryand-error 방법을 사용하여 simulated data 생성 → A standard (pre-training) model 생성
 - Replaying the current user's real workload
 - 데이터가 어느정도 쌓이면 replay mechanism을 사용하여 일정 시간의 user's SQL records 를 동일한 환경에서 execute 하여 user의 real behavior data를 저장한다 → 추후 model의 정확성 제고

Figure 2: System Architecture.

- ✓ Metrics Collector : collect and process metrics
 - Internal metrics: 14 state values + 49 cumulative values (Mysql)
 - State : buffer size, page size

Average value in a certain time interval

Cumulative : data reads, lock timeouts, buffer pool in pages, buffer pool read/write requests
 Difference between cumulative value at the same time

Figure 2: System Architecture.

- ✓ Metrics Collector : collect and process metrics
 - External metrics (latency and throughput)
 - Calculate the mean value of sampled result in 5 seconds

Figure 2: System Architecture.

- $\checkmark \text{ Recommender}$
 - ▶ RL model의 output 을 받아서 해당 configuration을 user에게 configuration modify request 를 보냄
 - ➢ User의 confirm 을 받은 후, CDB에 해당 configuration을 적용

Figure 2: System Architecture.

- ✓ Memory Pool
 - Store the training samples
 - ≻ Experience Sample: $(s_t, r_t, a_t, s_{t+1}) \rightarrow A$ transition
 - *s_t*: The state of the current database
 - r_t : The reward value calculated by reward function via external metrics
 - *a_t*: Knobs of the database to be executed
 - s_{t+1} : The database's state vector after executing the configurations

Figure 2: System Architecture.

3. Reinforcement Learning

RL notation in CDBTune

Variables	Descriptions	Mapping to CDBTune		
S	State	Internal metrics of DBMS		
a	Action	Tunable knobs of DBMS		
r	Reward	The performance of DBMS		
α	Learning rate	Set to 0.001		
γ	Discount factor	Set to 0.99		
ω	The weights of neural network	Initialized to Uniform(-0.1,0.1)		
E	Environment the tuning target	An instance of CDB		
μ	Policy	Deep neural network		
θ^Q	Learnable parameters	Initialized to Normal(0,0.01)		
θ^{μ}	Actor, mapping state s_t to action a_t	-		
Q^{μ}	Critic, the policy μ	-		
L	Loss function	-		
У	Q value label through Q-learning algorithm	-		

RL for CDBTune

- Agent
 - CDBTune
- Environment
 - An instance of CDBTune (MySQL)
- State
 - Agent state (63 metrics)
 - 14 state values + 49 cumulative values
 - State : buffer size, page size
 - Cumulative : data reads, lock timeouts, buffer pool in pages, buffer pool read/write requests
- Reward
 - The difference between the performance at time t and t-1 or the initial settings (later)
- Action
 - Knob tuning operation
- Policy
 - The behavior of CDBTune in certain specific time and environment

Why Using RL?

✓ Search-based approach and the multistep learning의 한계를 해결하기 위해
 ✓ 가능한 제한된 sample을 가지고 학습하는 것.

Q-learning

DQN

적으로 증가함

Deep Deterministic Policy Gradient(DDPG)

Continuous action space를 가진 문제에서 Actor-Critic 방법이 더 좋다!

Action에 대한 적분을 수행하지 않아 계산상 이득을 본다.

DDPG = PG(Continuous Action Space) + DQN(Experience Replay)

- Model Free & Off Policy, Actor Critic Algorithm

Figure 4: DDPG for CDBTune.

Actor function : $a_t = \mu(s_t | \theta^{\mu})$ Critic function : $Q^{\mu}(s, a) = \mathbb{E}_{r_t, s_{t+1} \sim E} [r(s_t, a_t) + \gamma Q^{\mu}(s_{t+1}, \mu(s_{t+1}))] \longrightarrow Q^{\mu}(s, a | \theta^Q)$

Parameterized by θ^{Q}

Q-leaning (In critic network)

$$\min L(\theta^Q) = \mathbb{E}[(Q(s, a | \theta^Q) - y)^2]$$
$$y = r(s_t, a_t) + \gamma Q^{\mu}(s_{t+1}, \mu(s_{t+1}) | \theta^Q)$$

Actor function : $a_t = \mu(s_t | \theta^{\mu})$ Critic function : $Q^{\mu}(s, a) = \mathbb{E}_{r_t, s_{t+1} \sim E} [r(s_t, a_t) + \gamma Q^{\mu} (s_{t+1}, \mu(s_{t+1}))]$

Q-leaning (In critic network)

$$\min L(\theta^Q) = \mathbb{E}[(Q(s, a|\theta^Q) - y)^2]$$
$$y = r(s_t, a_t) + \gamma Q^{\mu}(s_{t+1}, \mu(s_{t+1})|\theta^Q)$$

Policy Gradient (In actor network)

$$\begin{split} \nabla_{\theta}{}^{\mu}J &\approx \mathbb{E}[\nabla_{\theta}{}^{\mu}Q(s,a|\theta^{Q}) \Big|_{s=s_{t},a=\mu(s_{t})}] \\ &= \mathbb{E}[\nabla_{a}Q(s,a|\theta^{Q}) \Big|_{s=s_{t},a=\mu(s_{t})} \nabla_{\theta}{}^{\mu}\mu(s|\theta^{\mu}) \Big|_{s=s_{t}}] \end{split}$$

Step 1. We first extract a batch of transition (s_t, r_t, a_t, s_{t+1}) from the experience replay memory

Step 1. We first extract a batch of transition (s_t, r_t, a_t, s_{t+1}) from the experience replay memory

Step 2. We feed s_{t+1} to the actor network and output the knob settings a'_{t+1} to be executed at next moment

Step 1. We first extract a batch of transition (s_t, r_t, a_t, s_{t+1}) from the experience replay memory

Step 2. We feed s_{t+1} to the actor network and output the knob settings a'_{t+1} to be executed at next moment

Step 3. We get the value (score) V_{t+1} after sending s_{t+1} and a'_{t+1} to the critic network

Step 4. According to Q-Learning algorithm, V_{t+1} is multiplied by discount factor γ and added by the value of reward at time *t*, and now we can estimate the value of V'_t of the current state s_t .

Step 4. According to Q-Learning algorithm, V_{t+1} is multiplied by discount factor γ and added by the value of reward at time *t*, and now we can estimate the value of V'_t of the current state s_t .

Step 5. We feed s_t (obtained at the first step) to the critic network and further acquire the value V_t of the current state

Step 4. According to Q-Learning algorithm, V_{t+1} is multiplied by discount factor γ and added by the value of reward at time *t*, and now we can estimate the value of V'_t of the current state s_t .

Step 5. We feed s_t (obtained at the first step) to the critic network and further acquire the value V_t of the current state

Step 6. We compute the square difference between V'_t and V_t and optimize parameter θ^Q of the critic network by gradient descent

Step 7. We use $Q(s = s_t, \mu(s_t)|\theta^Q)$ outputted by the critic network as the loss function, and adopt gradient descent means to guide the update of the actor network gives a higher score for the recommendation outputted by the actor network each time.

Reward Function

CDBTune은 DBA's tuning process를 모방해 reward function을 구성했다. DBA's tuning process는 다음과 같다.

(1) DBMS의 초기 성능을 D_0 , DBMS의 최종 성능을 D_n 이라고 한다.

(2) DBA가 knob을 tuning하고, 성능이 D_1 이 되면, 성능변화값 $\Delta(D_1, D_0)$ 을 측정한다.

(3) Tuning이 항상 옳다는 것은 보장하지 못하기 때문에 i step에서 $\Delta(D_i, D_0)$ 와 $\Delta(D_i, D_{i-1})$ 를 계산한다.

Reward Function

Throughput

 $\Delta T = \begin{cases} \Delta T_{t \to 0} = \frac{T_t - T_0}{T_0} \\ \Delta T_{t \to t-1} = \frac{T_t - T_{t-1}}{T_{t-1}} \end{cases}$

Latency

$$\Delta \mathbf{L} = \begin{cases} \Delta \mathbf{L}_{t \to 0} = \frac{-L_t + L_0}{L_0} \\ \\ \Delta \mathbf{L}_{t \to t-1} = \frac{-L_t + L_{t-1}}{L_{t-1}} \end{cases}$$

Reward of Throughput and Latency

$$r = \begin{cases} \left((1 + \Delta_{t \to 0})^2 - 1 \right) | 1 + \Delta_{t \to t-1} |, \ \Delta_{t \to 0} > 0 \\ - \left((1 - \Delta_{t \to 0})^2 - 1 \right) | 1 - \Delta_{t \to t-1} |, \ \Delta_{t \to 0} \le 0 \end{cases}$$

Final Reward

$$r = C_T \times r_T + C_L \times r_L$$
$$C_T + C_L = 1$$

4. Experiment

Experiment

✓ 4 Comparison

- CDBTune
- > **BestConfig** : BestConfig: tapping the performance potential of systems via automatic configuration tuning
- > OtterTune : Automatic Database Management System Tuning Through Large-scale Machine Learning
- > **DBA** : 3 DBA experts who have been engaged in tuning and optimizing DBMS for 12 years in Tencent.

Experiment - Environment

- ✓ Workload
 - ➢ 3 Benchmark tools:
 - Sysbench
 - MySQL-TPCH
 - TPC-MySQL
 - ➢ 6 Workload:
 - Read-only, write-only, and read-write workload of Sysbench
 - ✤ 16 tables of which each contains about 200K records (about 8.5 GB) / # of threads is 1500
 - TPC-H
 - ✤ 16 tables (about 16 GB)
 - TPC-C
 - ✤ 200 warehouses (about 12.8 GB) / # concurrent connections to 32
 - YCSB
 - ✤ 35 GB data using 50 threads and 20M operations

Experiment - Environment

- ✓ DBA Data
 - OtterTune needs high quality data
 - DBA's experience data : Training data used on CDBTune = 1 : 20
- ✓ Setting
 - PyTorch and Python tools including scikit-learn library
 - Run on Tencent's cloud server (Offline Training)
 - 12-core 4.0 GHz CPU
 - 64 GB RAM
 - 200 GB disk

✓ Expression

- > M_{training condition} \rightarrow {tuning condition}
- ➢ Use 8 GB RAM training setting for 12 GB RAM online tuning: M_8G → 12G
- ✓ Notes
 - ✓ Best result of recommendations of CDBTune and OtterTune
 - ✓ Give **50 steps** in the experiment to BestConfig for it restarts the search each time (a lot of time)
 - ✓ Use **priority experience replay** to improve offline training performance
 - ✓ Adopt **parallel computing** (30 servers) to reduce the offline training time

Online Tuning Instances

Table 1: Database instances and hardware configuration.

Instance	RAM (GB)	Disk (GB)
CDB-A	8	100
CDB-B	12	100
CDB-C	12	200
CDB-D	16	200
CDB-E	32	300
CDB-X1	(4, 12, 32, 64, 128)	100
CDB-X2	12	(32, 64, 100, 256, 512)

Experiment – Time Consuming

- ✓ Offline training time (only for CDBTune)
 - ➤ 4.7 hours for 266 knobs
 - > 2.3 hours for 65 knobs
 - # of knobs does not affect the online tuning time
- $\checkmark\,$ Online tuning time
 - \succ 5 steps → 25 mins

Table 2: Detailed online tuning steps and time of CDBTune and other tools.

Tuning Tools	Total Steps	Time of One Step (mins)	Total Time (mins)
CDBTune	5	5	25
OtterTune	5	11	55
BestConfig	50	5	250
DBA	1	516	516

Experiment – Varying Tuning Steps

- \checkmark Accumulated trying steps
 - Fine-tune the standard model with limited steps
 - ➤ 5 step 간격
- ✓ CDBTune 은 step 수가 증가함에 따라서 성능이 좋아짐
- \checkmark Better result in the first 5 steps in all cases
- \checkmark OtterTune keeps stable because:
 - Supervised learning
 - Regression

Figure 5: Performance by increasing number of steps

Experiment – # of knobs (ordered)

- ✓ Sort **266** tunable knobs (maximum number of knobs that DBA uses to tune for CDB)
- ✓ Both **DBA** and **OtterTune** rank the knobs based on their importance to the database performance
- ✓ CDBTune can achieve better performance in **all cases**
- ✓ DBA and OtterTune decrease after # of knobs exceed a certain number

Figure 6: Performance by increasing number of knobs (knobs sorted by DBA).

Figure 7: Performance by increasing number of knobs (knobs sorted by OtterTune).

Experiment – # of knobs (random)

- ✓ Randomly selects different number of knobs
 - > 40 selected knobs must contain the 20 selected knobs from the precious one
- ✓ Performance is continuously improved while the number of knobs increasing
- $\checkmark\,$ Poor at the beginning
 - > A small number of selected knobs have a small impact on performance
- ✓ Stable at the end
 - Later knobs will not greatly affect the performance
- ✓ Use bellow techniques to accelerate the convergence:
 - ✓ Priority experience replay
 - ✓ Parallel computing
 - ✓ (GPU)

Figure 8: Performance by increasing number of knobs (knobs randomly selected by CDBTune).

Experiment – Difference workloads

- ✓ CDBTune achieves higher performance than OtterTune, BestConfig, and DBA
- ✓ CDBTune > OtterTune > BestConfig → learning-based method is more effective
- ✓ OtterTune performs inferior to the DBA → Try-and-error samples instead of massive high-quality DBA's experience tuning data
 MySQL Default CDB Default
- ✓ BestConfig → Limitations of search-based algorithm
- ✓ Workload가 다름에 따라서 중요도가 높은 파라미터들이 스스로 튜닝이 된다
 - RW : innodb_write_io_threds, innodb_purge_threads
 - RO : innodb_read_io_threads
 - > WO : innodb_write_io_threds, innodb_purge_threads
- ✓ A large negative reward (e.g., -100) if the instance crush during the tuning process

Table 3: Higher throughput (T) and lower latency (L) of CDBTune than BestConfig, DBA and OtterTune.

Workload	BestConfig		DBA		OtterTune	
	Т	L	Т	L	Т	L
RW	↑ 68.28%	↓ 51.65%	14.48% ↑	↓ 8.91%	1 29.80%	↓ 35.51%
RO	↑ 42.15%	↓ 43.95%	↑ 4.73%	↓ 11.66%	^44.46 %	123.63%
WO	↑ 128.66%	↓ 61.35%	↑ 46.57%	↓ 43.33%	191.25% ♦	J 59.27%

Experiment – Adaptability on Memory Size and Disk Capacity change

- ✓ Memory size and disk capacity are the most two properties that users prefer to adjust
- ✔ CDB-A, CDB-X1, CDB-C, CDB-X2 를 사용하여 test
 - > M_A \rightarrow X1 (cross testing)
 - > M_X1 \rightarrow X1 (normal testing)
- ✓ Strong adaptability in memory size and disk capacity

Figure 10: Performance comparison for Sysbench WO workload when applying the model trained on 8G memory to (X)G memory hardware environment.

Table 1: Database instances and hardware configuration.

Instance	RAM (GB)	Disk (GB)		
CDB-A	8	100		
CDB-B	12	100		
CDB-C	12	200		
CDB-D	16	200		
CDB-E	32	300		
CDB-X1	(4, 12, 32, 64, 128)	100		
CDB-X2	12	(32, 64, 100, 256, 512)		

Figure 11: Performance comparison for Sysbench RO workload when applying the model trained on 200G disk to (X)G disk hardware environment.

Experiment – Adaptability on workload change

- ✓ CDB-C instance 사용
 - > M_RW \rightarrow TPC-C (cross testing)
 - > M_TPC-C \rightarrow TPC-C (normal testing)
- ✓ Strong adaptability in workload

Figure 12: Performance comparison when applying the model trained on Sysbench RW workloads to TPC-C.

Experiment – Summary

✓ CDBTune

- ✓ Limited training data
- \checkmark Strong adaptability in environment and data changes
- ✓ RL → simulate human brain, learn towards an optimizing direction

5. GitHub

GitHub - 실습

^{11.} Enter the command on CDBTune2: netstat -an | grep 20000 to see if the startup is successful.

#!/usr/bin/env bash

Github:

https://github.com/HustAlsGroup/CDBTune

47

^{12.} Write a start_train.sh script in CDBTune1's /home/cheng/AutoTuner/tuner based on CDBTune2's start_server.sh script. The content is as follows:

GitHub

- 6개의 Mysql knobs tuning
 - Knobs' name
 - Knobs default values
 - [min, max, default]

CDBTune/environment/knobs.py

```
57
       KNOB DETAILS = {
           ###'skip name resolve': ['enum', ['OFF', 'ON']],
58
           'table open cache': ['integer', [1, 10240, 512]],
59
60
           #'max connections': ['integer', [1100, 100000, 80000]],
61
           'innodb buffer pool size': ['integer', [1048576, memory size, memory size]],
62
           'innodb buffer pool instances': ['integer', [1, 64, 8]],
63
           #1
64
           #'innodb log files in group': ['integer', [2, 100, 2]],
65
           #1
66
           #'innodb log file size': ['integer', [134217728, 5497558138, 15569256448]],
67
           'innodb purge threads': ['integer', [1, 32, 1]],
68
           'innodb read io threads': ['integer', [1, 64, 12]],
69
           'innodb write io threads': ['integer', [1, 64, 12]],
70
           #3
71
           #'max binlog cache size': ['integer', [4096, 4294967296, 18446744073709547520]],
           #'binlog cache size': ['integer', [4096, 4294967296, 18446744073709547520]],
72
           #'max binlog size': ['integer', [4096, 1073741824, 1073741824]],
73
74
```

GitHub – train.py

- Initial external metrics:
 - Throughput: 2390.496
 - Latency: 4.201
 - Query Per Second: 38247.985
- Action:
 - 6개의 파라미터 값 선정
 - 0~1 사이로 통일
 - 예: knob 범위가 [1, 32], action 값이 0.5일 때 knob 값은 12.

49

1	2021-03-23 18:08:53[INFO]
2	[Env initialized][Metric tps: 2390.496 lat: 4.201 qps: 38247.985]
3	2021-03-23 18:08:53[INFO] [ddpg] Action: [1. 0.9482131 1. 0.35114706 1. 1.
]
4	2021-03-23 18:11:45[INFO]
5	[ddpg][Episode: 0][Step: 0][Metric tps:2439.638 lat:4.162 qps:39034.814]Reward: 28252.2021048 Score
	: 0.0282522021048 Done: False
6	2021-03-23 18:11:45[INFO] [ddpg][Episode: 0][Step: 0] step: 172.337084055s env step: 172.312063217s
	train step: 0.0s restart time: 12.2471969128s action time: 0.0193700790405s
7	2021-03-23 18:11:45[INFO] [ddpg][Episode: 0][Step: 0][Average] step: 172.337084055s env step: 172.3
	12063217s train step: 0.0s restart time: 12.2471969128s action time: 0.0193700790405s
8	2021-03-23 18:11:45[INFO] [ddpg] Action: [1. 0.994705 1. 0.22277299 1. 0.
	8029696]
9	2021-03-23 18:14:38[INFO]
10	<pre>[ddpg][Episode: 0][Step: 1][Metric tps:2263.179 lat:4.371 qps:36210.665]Reward: -0.123867732922 Sco</pre>
	re: -0.0956155308177 Done: False
11	2021-03-23 18:14:38[INFO] [ddpg][Episode: 0][Step: 1] step: 172.318767786s env step: 172.313977003s
	train step: 0.0s restart time: 12.2493751049s action time: 0.000741004943848s
12	2021-03-23 18:14:38[INFO] [ddpg][Episode: 0][Step: 1][Average] step: 172.318767786s env step: 172.3
	13977003s train step: 0.0s restart time: 12.2493751049s action time: 0.0100555419922s
13	2021-03-23 18:14:38[INFO] [ddpg] Action: [1. 0.6609533 0.99044865 0.47771877 1. 0.
	5932251]
14	2021-03-23 18:17:30[INFO]

GitHub – evaluate.py

Throughput 및 Latency 향상정도

- 훈련과정
 - train.py \rightarrow 3⁷ episode
 - evaluate.py → max_step은 5

- Initial external metrics:
 - Throughput: **1839.634**
 - Latency: 5.521
 - Query Per Second: 29434.192
- DDPG result:
 - Throughput: 1965.819
 - Latency: **5.056**
 - Query Per Second: 31453.148

bash /home/jinhuijun/CDBTu	ne/scripts/run_s	ysbench.sh r	read 10.1	78.0.6 3306 1	123456 1	50 /home	/jinhuijun/CDI
Tune/train_result/tmp/1616	552929.txt						
********	***						
[1739.954000000002, 5.671	, 27839.818]						
[1839.634, 5.520999999999999	99, 29434.192000	000003]					
[3207.051, 3.22, 3207.051]							
********	***						
\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$							
-0.162223095135							
-0.0969989966205							
-0.123088636026							
\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$							
Performance remained!							
Testin	g Finished						
Knobs are saved at: test k	nob/eval ddpg 16	16552055.pkl	L				
Proposal Knob At 0							
jinhuijun@cdbtune-1:~/CDBT	une/tuner\$ ls						
evaluate.py log	read_pickle.py	save_memory		start_train.	sh tra:	in.log	utils.py
initpy model_params	save_knobs	save_state	actions	test_knob	tra	in.py	utils.pyc
jinhuijun@cdbtune-1:~/CDBT	une/tuner\$ vim r	ead_pickle.p	ρ¥				
jinhuijun@cdbtune-1:~/CDBT	une/tuner\$ pytho	n read pickl	le.py				
{'metrics': [1965.81900000	00002, 5.0559999	999999999, 31	1453.1479	999999997], ']	lat_dec'	8.4223	87248686832,
<pre>knob': {'innodb_buffer_pool</pre>	l_size': 1844324	096, 'innodk	_read_io	threads': 55	5, 'inno	db_buffe	r_pool_instanc
es': 54, 'innodb_purge_thre	eads': 6, 'innod	b_write_io_t	threads':	36, 'table_d	pen_cacl	ne': 276	5}, 'tps_inc':
6.859244828047328}						5	J
jinhuijun@cdbtune-1:~/CDBT	une/tuner\$						

Q & A

Appendix - 1

[Model-Free Algorithm 한장 요약]

- ✓ Model-Free Learning은 Environment에 대해 모르며 Action에 따른 Next State와 Next Reward를 수동적으로 받음
- ✓ Environment를 모르므로 Exploration(탐험)을 통한 Trial and Error로 Policy Function을 점차 학습시켜야 함
- ✓ 이러한 과정을 통해 Expected sum of future reward를 최대로 하는 Policy Function을 구하고자 함

Thanks!