
1

목록
1. Introduction

2. System Overview

1) Offline Training

2) Online Tuning

3. Reinforcement Learning

1) DDPG

2) Agent, Environment, State, Reward, Action

4. Experiment

1) Setup

2) Result and Graph

5. Git Code 실행

6. Appendix
2

1. Introduction

3

Introduction - Problem

 DBMS: Database management system (Mysql, RocksDB, Redis)
 DBA: Database administrator
 CDB: Cloud database

• Hundreds of tunable
configuration knobs.

• A few
• Expensive

• Diverse database
instances

• Diverse query
workloads

DBMS DBA CDB

Able Hard

 Every user needs to the database for better performance

4

Introduction - Solution

 DBMS configuration tuning:

 Search-based methods (BestConfig)

 Tuning based on certain principles

 Limitations

1. Spend a great amount of time

2. Does not use previous knowledges

 Learning-based methods (OtterTune)

 Use machine-learning techniques to tuning

 Limitations

1. Pipelined learning model  not in an end-to-end manner

2. Rely on large-scale high-quality training samples

3. A large number of knobs  high-dimensional continuous space

4. Users change the hardware configurations often
5

CDBTune

 An end-to-end automatic cloud database tuning system CDBTune using deep reinforcement learning

1. End-to-end automatic database tuning system

2. Try-and-error manner with a limited number of samples

3. An effective reward function

4. Use DDPG to find optimal configurations in high-dimensional continuous space

5. A good adaptability (different workload, hardware)

6

2. System Overview

7

System Overview

 CDBTune 의큰두개의과정

 Offline Training

 train.py 파일 Sysbench 로 workload 실행

 Online Tuning

 evaluate.py  Sysbench 로 workload 실행

 CDBTune for ADDB ???

 Offline Training

 train.py 파일 db_bench (RocksDB) or memtier bench (Redis) 로 workload 실행

 Online Tuning

 evaluate.py  db_bench (RocksDB) or memtier bench (Redis) 로 workload 실행

8

CDBTune

 MySQL, MongoDB, PostgreSQL에적용

 TencentDB for Redis 있음

 TencentDB for RocksDB 없음

9

System Overview - Offline Training

 Training data 를통하여 model 을 pre-training

 Training data:

 Quadruple: <q, a, s, r>

 q: a set of query workload (i.e., SQL queries)

 a: a set of knobs as well as their values when processing q

 s: the database state (which is a set of 63 metrics) when processing q

 r: the performance when processing q (including throughput and latency)

 Collected metrics and knobs data will be stored in the memory pool

 Training model:

 Deep RL as the training model

 Try-and-error strategy  local optimum에빠질확률낮춤Offline Training (train.py)

10

System Overview - Offline Training

 Training data generation:

1. Cold start:

• Use standard workload testing tools (i.e., Sysbench) to generate a set of query workloads q

• For each q, execute it on CDB and get the quadruple

2. Incremental training:

• 추후 CDBTune 사용함에따라, 사용자의 tuning request도하나의 experience 로간주하여, CDBTune

을강화하고정확도를높여준다

11

System Overview - Online Tuning

 과정:

1. 150s 동안 user의 query workload q 수집.

2. Get current knob configuration a

3. Execute the query workload in CDB to generate the current state s and performance r

4. Offline training 에서얻은 model로 online tuning을실행

5. Best performance를가져온 knobs 를 user에게추천

6. Update the RL model / memory pool

 Online tuning과 Offline training 차이점:

1. Replay the user’s current workload  fine-tune the pre-trained model

2. User의요구하는성능도달 or maximum step에도달하면 tuning 이끝난다

12

13

System Architecture

 Workload generator

 Generating the standard workload testing

 초반에데이터가적으므로, Sysbench / TPC-MySQL과같은 standard workload testing tool과 RL의 try-

and-error 방법을사용하여 simulated data 생성 A standard (pre-training) model 생성

 Replaying the current user’s real workload

 데이터가어느정도쌓이면 replay mechanism을사용하여일정시간의 user’s SQL records 를동일한

환경에서 execute 하여 user의 real behavior data를저장한다추후 model의정확성제고

14

System Architecture

 Metrics Collector : collect and process metrics

 Internal metrics: 14 state values + 49 cumulative values (Mysql)

 State : buffer size, page size

Average value in a certain time interval

 Cumulative : data reads, lock timeouts, buffer pool in pages, buffer pool read/write requests

Difference between cumulative value at the same time

15

System Architecture

 Metrics Collector : collect and process metrics

 External metrics (latency and throughput)

 Calculate the mean value of sampled result in 5 seconds

16

System Architecture

 Recommender

 RL model의 output 을받아서해당 configuration을 user에게 configuration modify request 를보냄

 User의 confirm 을받은후, CDB에해당 configuration을적용

17

System Architecture

 Memory Pool

 Store the training samples

 Experience Sample: (st, rt, at, st+1)  A transition

 st : The state of the current database

 rt : The reward value calculated by reward function via external metrics

 at : Knobs of the database to be executed

 st+1 : The database’s state vector after executing the configurations

3. Reinforcement Learning

18

RL notation in CDBTune
Variables Descriptions Mapping to CDBTune

𝑠𝑠 State Internal metrics of DBMS

𝑎𝑎 Action Tunable knobs of DBMS

𝑟𝑟 Reward The performance of DBMS

𝛼𝛼 Learning rate Set to 0.001

𝛾𝛾 Discount factor Set to 0.99

𝜔𝜔 The weights of neural network Initialized to
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−0.1,0.1)

𝐸𝐸 Environment the tuning target An instance of CDB

𝜇𝜇 Policy Deep neural network

𝜃𝜃𝑄𝑄 Learnable parameters Initialized to 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,0.01)

𝜃𝜃𝜇𝜇 Actor, mapping state 𝑠𝑠𝑡𝑡 to action 𝑎𝑎𝑡𝑡 -

𝑄𝑄𝜇𝜇 Critic, the policy 𝜇𝜇 -

𝐿𝐿 Loss function -

𝑦𝑦 Q value label through Q-learning algorithm -

19

• Agent
- CDBTune

• Environment
- An instance of CDBTune (MySQL)

• State
- Agent state (63 metrics)

- 14 state values + 49 cumulative values
- State : buffer size, page size
- Cumulative : data reads, lock timeouts, buffer pool in pages, buffer pool read/write requests

• Reward
- The difference between the performance at time t and t-1 or the initial settings (later)

• Action
- Knob tuning operation

• Policy
- The behavior of CDBTune in certain specific time and environment

RL for CDBTune

20

Why Using RL?

 Search-based approach and the multistep learning의 한계를해결하기위해
 가능한제한된 sample을가지고학습하는것.

𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 ⟵ (1 − 𝛼𝛼)Q s𝑡𝑡 , 𝑎𝑎𝑡𝑡 + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾max𝑎𝑎𝑡𝑡+1 𝑄𝑄 𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1]

𝑄𝑄 𝑠𝑠, 𝑎𝑎,𝜔𝜔 → Q 𝑠𝑠, 𝑎𝑎

Q-learning

DQN

 작은 state에서효과적
- 큰 state 공간이라면, Q-table은많은
state들을저장하기어려움

 Discrete한알고리즘
- 고차원에서, output의크기가지수

적으로증가함

DDPG
21

Deep Deterministic Policy Gradient(DDPG)

DDPG
Actor-Critic Method

DDPG
Deterministic Policy

DQN
Value function approximation

PG
Stochastic Policy

>

>

Continuous action space를 가진 문제에서 Actor-Critic 방법이 더 좋다!

Action에 대한 적분을 수행하지 않아 계산상 이득을 본다.

22

DDPG = PG(Continuous Action Space) + DQN(Experience Replay)
- Model Free & Off Policy, Actor Critic Algorithm

Actor function : 𝑎𝑎𝑡𝑡 = 𝜇𝜇(𝑠𝑠𝑡𝑡|𝜃𝜃𝜇𝜇)
Critic function : 𝑄𝑄𝜇𝜇 𝑠𝑠, 𝑎𝑎 = 𝔼𝔼𝑟𝑟𝑡𝑡,𝑠𝑠𝑡𝑡+1~𝐸𝐸 𝑟𝑟 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 + 𝛾𝛾𝑄𝑄𝜇𝜇 𝑠𝑠𝑡𝑡+1,𝜇𝜇 𝑠𝑠𝑡𝑡+1

Q-leaning (In critic network)
min 𝐿𝐿 𝜃𝜃𝑄𝑄 = 𝔼𝔼[𝑄𝑄 𝑠𝑠, 𝑎𝑎 𝜃𝜃𝑄𝑄 − 𝑦𝑦 2]

𝑦𝑦 = 𝑟𝑟 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 + 𝛾𝛾Q𝜇𝜇(𝑠𝑠𝑡𝑡+1,𝜇𝜇 𝑠𝑠𝑡𝑡+1 |𝜃𝜃𝑄𝑄)

𝑄𝑄𝜇𝜇(𝑠𝑠, 𝑎𝑎|𝜃𝜃𝑄𝑄)

Parameterized by 𝜃𝜃𝑄𝑄

23

Actor function : 𝑎𝑎𝑡𝑡 = 𝜇𝜇(𝑠𝑠𝑡𝑡|𝜃𝜃𝜇𝜇)
Critic function : 𝑄𝑄𝜇𝜇 𝑠𝑠, 𝑎𝑎 = 𝔼𝔼𝑟𝑟𝑡𝑡,𝑠𝑠𝑡𝑡+1~𝐸𝐸 𝑟𝑟 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 + 𝛾𝛾𝑄𝑄𝜇𝜇 𝑠𝑠𝑡𝑡+1,𝜇𝜇 𝑠𝑠𝑡𝑡+1

Q-leaning (In critic network)
min 𝐿𝐿 𝜃𝜃𝑄𝑄 = 𝔼𝔼[𝑄𝑄 𝑠𝑠, 𝑎𝑎 𝜃𝜃𝑄𝑄 − 𝑦𝑦 2]

𝑦𝑦 = 𝑟𝑟 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 + 𝛾𝛾Q𝜇𝜇(𝑠𝑠𝑡𝑡+1,𝜇𝜇 𝑠𝑠𝑡𝑡+1 |𝜃𝜃𝑄𝑄)

Policy Gradient (In actor network)
∇𝜃𝜃𝜇𝜇𝐽𝐽 ≈ 𝔼𝔼[∇𝜃𝜃𝜇𝜇𝑄𝑄 𝑠𝑠, 𝑎𝑎 𝜃𝜃𝑄𝑄 �

𝑠𝑠=𝑠𝑠𝑡𝑡,𝑎𝑎= 𝜇𝜇(𝑠𝑠𝑡𝑡)
]

= 𝔼𝔼[∇𝑎𝑎𝑄𝑄 𝑠𝑠, 𝑎𝑎 𝜃𝜃𝑄𝑄 �
𝑠𝑠=𝑠𝑠𝑡𝑡,𝑎𝑎= 𝜇𝜇 𝑠𝑠𝑡𝑡

∇𝜃𝜃𝜇𝜇𝜇𝜇 𝑠𝑠 𝜃𝜃𝜇𝜇 �
𝑠𝑠=𝑠𝑠𝑡𝑡

]

24

Seven main steps

Step 1. We first extract a batch of transition (𝑠𝑠𝑡𝑡 , 𝑟𝑟𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡+1) from the experience replay memory

Memory Pool

(𝑠𝑠𝑡𝑡 , 𝑟𝑟𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1)

25

Seven main steps

Step 1. We first extract a batch of transition (𝑠𝑠𝑡𝑡 , 𝑟𝑟𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡+1) from the experience replay memory

Memory Pool 𝑠𝑠𝑡𝑡+1

Step 2. We feed 𝑠𝑠𝑡𝑡+1 to the actor network and output the knob settings 𝑎𝑎𝑡𝑡+1′ to be executed at next moment

𝑎𝑎𝑡𝑡+1′

(𝑠𝑠𝑡𝑡 , 𝑟𝑟𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1)

26

Seven main steps

Step 1. We first extract a batch of transition (𝑠𝑠𝑡𝑡 , 𝑟𝑟𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡+1) from the experience replay memory

Memory Pool 𝑠𝑠𝑡𝑡+1

Step 2. We feed 𝑠𝑠𝑡𝑡+1 to the actor network and output the knob settings 𝑎𝑎𝑡𝑡+1′ to be executed at next moment

𝑎𝑎𝑡𝑡+1′

Step 3. We get the value (score) 𝑉𝑉𝑡𝑡+1 after sending 𝑠𝑠𝑡𝑡+1 and 𝑎𝑎′𝑡𝑡+1 to the critic network

𝑉𝑉𝑡𝑡+1

(𝑠𝑠𝑡𝑡 , 𝑟𝑟𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1)

27

Seven main steps

Step 4. According to Q-Learning algorithm, 𝑉𝑉𝑡𝑡+1 is multiplied by discount factor 𝛾𝛾 and added by the value of reward
at time 𝑡𝑡, and now we can estimate the value of 𝑉𝑉′𝑡𝑡 of the current state 𝑠𝑠𝑡𝑡.

Memory Pool

𝑉𝑉′𝑡𝑡 = 𝛾𝛾𝑉𝑉𝑡𝑡+1 + 𝑟𝑟𝑡𝑡

(𝑠𝑠𝑡𝑡 , 𝑟𝑟𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1)

28

Seven main steps

Step 4. According to Q-Learning algorithm, 𝑉𝑉𝑡𝑡+1 is multiplied by discount factor 𝛾𝛾 and added by the value of reward
at time 𝑡𝑡, and now we can estimate the value of 𝑉𝑉′𝑡𝑡 of the current state 𝑠𝑠𝑡𝑡.

Memory Pool

𝑉𝑉𝑡𝑡

Step 5. We feed 𝑠𝑠𝑡𝑡 (obtained at the first step) to the critic network and further acquire the value 𝑉𝑉𝑡𝑡 of the current state

(𝑠𝑠𝑡𝑡 , 𝑟𝑟𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1)

𝑠𝑠𝑡𝑡

29

𝑎𝑎𝑡𝑡

Seven main steps

Step 4. According to Q-Learning algorithm, 𝑉𝑉𝑡𝑡+1 is multiplied by discount factor 𝛾𝛾 and added by the value of reward
at time 𝑡𝑡, and now we can estimate the value of 𝑉𝑉′𝑡𝑡 of the current state 𝑠𝑠𝑡𝑡.

Memory Pool

𝐿𝐿𝑡𝑡 = 𝑉𝑉𝑡𝑡 − 𝑉𝑉′𝑡𝑡 2

Step 5. We feed 𝑠𝑠𝑡𝑡 (obtained at the first step) to the critic network and further acquire the value 𝑉𝑉𝑡𝑡 of the current state

(𝑠𝑠𝑡𝑡 , 𝑟𝑟𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1)

Step 6. We compute the square difference between 𝑉𝑉′𝑡𝑡 and 𝑉𝑉𝑡𝑡 and optimize parameter 𝜃𝜃𝑄𝑄 of the critic network by gradient descent

30

Seven main steps

Step 7. We use 𝑄𝑄(𝑠𝑠 = 𝑠𝑠𝑡𝑡 ,𝜇𝜇 𝑠𝑠𝑡𝑡 |𝜃𝜃𝑄𝑄) outputted by the critic network as the loss function, and adopt gradient descent
means to guide the update of the actor network gives a higher score for the recommendation outputted by the
actor network each time.

Memory Pool

∇𝑎𝑎𝑄𝑄 𝑠𝑠, 𝑎𝑎 𝜃𝜃𝑄𝑄 �
𝑎𝑎= 𝜇𝜇 𝑠𝑠𝑡𝑡

∇𝜃𝜃𝜇𝜇𝜇𝜇 𝑠𝑠 𝜃𝜃𝜇𝜇

(𝑠𝑠𝑡𝑡 , 𝑟𝑟𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1)

31

Reward Function

CDBTune은 DBA’s tuning process를모방해 reward function을구성했다. DBA’s tuning process는다음과같다.

(1) DBMS의초기성능을 𝐷𝐷0, DBMS의최종성능을 𝐷𝐷𝑛𝑛이라고한다.

(2) DBA가 knob을 tuning하고, 성능이 𝐷𝐷1이되면, 성능변화값 ∆(𝐷𝐷1,𝐷𝐷0) 을측정한다.

(3) Tuning이항상옳다는것은보장하지못하기때문에 𝑖𝑖 step에서 ∆(𝐷𝐷𝑖𝑖 ,𝐷𝐷0) 와 ∆(𝐷𝐷𝑖𝑖 ,𝐷𝐷𝑖𝑖−1)를계산한다.

32

Reward Function

∆T =
∆T𝑡𝑡→0 =

𝑇𝑇𝑡𝑡 − 𝑇𝑇0
𝑇𝑇0

∆T𝑡𝑡→𝑡𝑡−1 =
𝑇𝑇𝑡𝑡 − 𝑇𝑇𝑡𝑡−1
𝑇𝑇𝑡𝑡−1

∆L =
∆L𝑡𝑡→0 =

−𝐿𝐿𝑡𝑡 + 𝐿𝐿0
𝐿𝐿0

∆L𝑡𝑡→𝑡𝑡−1 =
−𝐿𝐿𝑡𝑡 + 𝐿𝐿𝑡𝑡−1

𝐿𝐿𝑡𝑡−1

𝑟𝑟 = �
1 + ∆𝑡𝑡→0 2 − 1 1 + ∆𝑡𝑡→𝑡𝑡−1 , ∆𝑡𝑡→0> 0

− 1 − ∆𝑡𝑡→0 2 − 1 1 − ∆𝑡𝑡→𝑡𝑡−1 , ∆𝑡𝑡→0≤ 0

𝑟𝑟 = 𝐶𝐶𝑇𝑇 × 𝑟𝑟𝑇𝑇 + 𝐶𝐶𝐿𝐿 × 𝑟𝑟𝐿𝐿
𝐶𝐶𝑇𝑇 + 𝐶𝐶𝐿𝐿 = 1

Throughput Latency

Reward of Throughput and Latency

Final Reward

33

4. Experiment

34

Experiment

35

 4 Comparison

 CDBTune

 BestConfig : BestConfig: tapping the performance potential of systems via automatic configuration tuning

 OtterTune : Automatic Database Management System Tuning Through Large-scale Machine Learning

 DBA : 3 DBA experts who have been engaged in tuning and optimizing DBMS for 12 years in Tencent.

Experiment - Environment

36

 Workload

 3 Benchmark tools:

 Sysbench

 MySQL-TPCH

 TPC-MySQL

 6 Workload:

 Read-only, write-only, and read-write workload of Sysbench

 16 tables of which each contains about 200K records (about 8.5 GB) / # of threads is 1500

 TPC-H

 16 tables (about 16 GB)

 TPC-C

 200 warehouses (about 12.8 GB) / # concurrent connections to 32

 YCSB

 35 GB data using 50 threads and 20M operations

Experiment - Environment

37

 DBA Data

 OtterTune needs high quality data

 DBA’s experience data : Training data used on CDBTune = 1 : 20

 Setting

 PyTorch and Python tools including scikit-learn library

 Run on Tencent’s cloud server (Offline Training)

 12-core 4.0 GHz CPU

 64 GB RAM

 200 GB disk

 Expression

 M_{training condition}→{tuning condition}

 Use 8 GB RAM training setting for 12 GB RAM online tuning: M_8G  12G

 Notes

 Best result of recommendations of CDBTune and OtterTune

 Give 50 steps in the experiment to BestConfig for it restarts the search each time (a lot of time)

 Use priority experience replay to improve offline training performance

 Adopt parallel computing (30 servers) to reduce the offline training time

Online Tuning Instances

Experiment –Time Consuming

38

 Offline training time (only for CDBTune)

 4.7 hours for 266 knobs

 2.3 hours for 65 knobs

 # of knobs does not affect the online tuning time

 Online tuning time

 5 steps  25 mins

Experiment – Varying Tuning Steps

39

 Accumulated trying steps

 Fine-tune the standard model with limited steps

 5 step 간격

 CDBTune 은 step 수가증가함에따라서성능이좋아짐

 Better result in the first 5 steps in all cases

 OtterTune keeps stable because:

 Supervised learning

 Regression

Experiment – # of knobs (ordered)

40

 Sort 266 tunable knobs (maximum number of knobs that DBA uses to tune for CDB)

 Both DBA and OtterTune rank the knobs based on their importance to the database performance

 CDBTune can achieve better performance in all cases

 DBA and OtterTune decrease after # of knobs exceed a certain number

Experiment – # of knobs (random)

41

 Randomly selects different number of knobs

 40 selected knobs must contain the 20 selected knobs from the precious one

 Performance is continuously improved while the number of knobs increasing

 Poor at the beginning

 A small number of selected knobs have a small impact on performance

 Stable at the end

 Later knobs will not greatly affect the performance

 Use bellow techniques to accelerate the convergence:

 Priority experience replay

 Parallel computing

 (GPU)

Experiment – Difference workloads

42

 CDBTune achieves higher performance than OtterTune, BestConfig, and DBA

 CDBTune > OtterTune > BestConfig  learning-based method is more effective

 OtterTune performs inferior to the DBA  Try-and-error samples instead of massive high-quality DBA’s experience tuning

data

 BestConfig  Limitations of search-based algorithm

 Workload가다름에따라서중요도가높은파라미터들이스스로튜닝이된다

 RW : innodb_write_io_threds, innodb_purge_threads

 RO : innodb_read_io_threads

 WO : innodb_write_io_threds, innodb_purge_threads

 A large negative reward (e.g., -100) if the instance crush during the tuning process

Experiment – Adaptability on Memory Size and Disk Capacity change

43

 Memory size and disk capacity are the most two properties that users prefer to adjust

 CDB-A, CDB-X1, CDB-C, CDB-X2 를사용하여 test

 M_A  X1 (cross testing)

 M_X1  X1 (normal testing)

 Strong adaptability in memory size and disk capacity

Experiment – Adaptability on workload change

44

 CDB-C instance 사용

 M_RW  TPC-C (cross testing)

 M_TPC-C  TPC-C (normal testing)

 Strong adaptability in workload

Experiment – Summary

45

 CDBTune

 Limited training data

 Strong adaptability in environment and data changes

 RL simulate human brain, learn towards an optimizing direction

5. GitHub

46

Github:
https://github.com/HustAIsGroup/CDBTune

cdbtune-1

Ubuntu 16.04

Python 2.7

IP: 10.178.0.5

Sysbench 1.0

Network training &

active stress testing

cdbtune-2

Ubuntu 16.04

Python 2.7

IP: 10.178.0.6

Mysql 5.6

Database server

CDBTune Architecture

GitHub - 실습

47

https://github.com/HustAIsGroup/CDBTune

• 6개의 Mysql knobs tuning
• Knobs’ name
• Knobs default values

• [min, max, default]
CDBTune/environment/knobs.py

GitHub

48

• Initial external metrics:
• Throughput: 2390.496
• Latency: 4.201
• Query Per Second: 38247.985

• Action:
• 6개의 파라미터 값 선정
• 0~1 사이로 통일

• 예: knob 범위가 [1, 32], action 값이
0.5일 때 knob 값은 12.

GitHub – train.py

49

• Initial external metrics:
• Throughput: 1839.634
• Latency: 5.521
• Query Per Second: 29434.192

• DDPG result:
• Throughput: 1965.819
• Latency: 5.056
• Query Per Second: 31453.148

• 훈련과정
• train.py  3개 episode
• evaluate.py  max_step은 5

GitHub – evaluate.py

6.86%
8.42%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

tps_inc lat_dec

Throughput 및 Latency 향상정도

50

Q & A

51

Appendix - 1

52

Thanks!

53

	슬라이드 번호 1
	목록
	1. Introduction
	슬라이드 번호 4
	슬라이드 번호 5
	슬라이드 번호 6
	2. System Overview
	슬라이드 번호 8
	슬라이드 번호 9
	슬라이드 번호 10
	슬라이드 번호 11
	슬라이드 번호 12
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	3. Reinforcement Learning
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	슬라이드 번호 24
	슬라이드 번호 25
	슬라이드 번호 26
	슬라이드 번호 27
	슬라이드 번호 28
	슬라이드 번호 29
	슬라이드 번호 30
	슬라이드 번호 31
	슬라이드 번호 32
	슬라이드 번호 33
	4. Experiment
	슬라이드 번호 35
	슬라이드 번호 36
	슬라이드 번호 37
	슬라이드 번호 38
	슬라이드 번호 39
	슬라이드 번호 40
	슬라이드 번호 41
	슬라이드 번호 42
	슬라이드 번호 43
	슬라이드 번호 44
	슬라이드 번호 45
	5. GitHub
	슬라이드 번호 47
	슬라이드 번호 48
	슬라이드 번호 49
	슬라이드 번호 50
	Q & A
	슬라이드 번호 52
	Thanks!

