An End-to-End Automatic Cloud Database Tuning
System Using Deep Reinforcement Learning
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1. Introduction



Introduction - Problem

v DBMS: Database management system (Mysql, RocksDB, Redis)
v' DBA: Database administrator

v CDB: Cloud database

DBMS
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Hundreds of tunable

Able

configuration knobs.

J

v Every user needs to the database for better performance

Hard

A 4

CDB

DBA
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« A few
« Expensive
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Diverse database
instances

Diverse query
workloads
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Introduction - Solution

v' DBMS configuration tuning:

» Search-based methods (BestConfig)

Tuning based on certain principles
Limitations
1. Spend a great amount of time

2. Does not use previous knowledges

» Learning-based methods (OtterTune)

Use machine-learning techniques to tuning

Limitations
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1. Pipelined learning model - not in an end-to-end manner
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Users change the hardware configurations often
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CDBTune

v" An end-to-end automatic cloud database tuning system CDBTune using deep reinforcement learning
1. End-to-end automatic database tuning system
Try-and-error manner with a limited number of samples

An effective reward function

Use DDPG to find optimal configurations in high-dimensional continuous space

o > D

A good adaptability (different workload, hardware)



2. System Overview



System Overview

v' CDBTune 2| 2 F712| 1t
v’ Offline Training
v’ train.py I} - Sysbench £ workload A&
v Online Tuning
v evaluate.py > Sysbench £ workload &3
v' CDBTune for ADDB ???
v Offline Training
v train.py It'¥ > db_bench (RocksDB) or memtier bench (Redis) = workload & 2
v Online Tuning
v' evaluate.py = db_bench (RocksDB) or memtier bench (Redis) 2 workload &3



CDBTune

v MySQL, MongoDB, PostgreSQLY| &

v TencentDB for Redis Y&

v TencentDB for RocksDB §l &
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System Overview - Offline Training

v’ Training data & &5 model & pre-training
v" Training data:
» Quadruple: <q, a, s, r>
= q:a set of query workload (i.e., SQL queries)
» a:asetof knobs as well as their values when processing q
» s:the database state (which is a set of 63 metrics) when processing q
= r:the performance when processing q (including throughput and latency)
» Collected metrics and knobs data will be stored in the memory pool
v" Training model:
» Deep RL as the training model

= Try-and-error strategy - local optimumO|| tt& =tE & Offline Training (train.py)



System Overview - Offline Training

v" Training data generation:
1. Cold start:
» Use standard workload testing tools (i.e., Sysbench) to generate a set of query workloads g
* For each g, execute it on CDB and get the quadruple
2. Incremental training:
- =3 CDBTune A2 et AFRXtO| tuning request T SFLEC| experience 2 7t3F35H0], CDBTune
7

= Bt d=t & =0 &Lt



System Overview - Online Tuning

v 1HE:
1. 150s &2t user?| query workload g =%&!.
2. Get current knob configuration a
3. Execute the query workload in CDB to generate the current state s and performance r
4. Offline training Ol Al @2 model £ online tuning=a &
5. Best performanceE 7'M knobs & user0f| Al =
6

. Update the RL model / memory pool

v" Online tuningdt Offline training XtO|&:
1. Replay the user’s current workload - fine-tune the pre-trained model

2. User?| @75t A5 & or maximum stepOfl =253 tuning 0| £ HHCt



System Architecture

v" Workload generator
» Generating the standard workload testing
= 2O O|O|H 7} M2 E = Sysbench / TPC-MySQL1} €2 standard workload testing tooldt RL2] try-
and-error & 2 AH2510] simulated data /3 - A standard (pre-training) model 4 -d

» Replaying the current user’s real workload

= OO|E{7} =& & O™ replay mechanism= Ar&0t0 Y7 Al7H2| user's SQL records & & &t
St A 0| M execute SF0 userl| real behavior datas X & StCt > =2 modell| HaHd X0

1
|
|
J
J
|
|
|
|
J
|
|
J
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Figure 2: System Architecture.



System Architecture

v Metrics Collector : collect and process metrics
» Internal metrics: 14 state values + 49 cumulative values (Mysql)
» State : buffer size, page size
Average value in a certain time interval
» Cumulative : data reads, lock timeouts, buffer pool in pages, buffer pool read/write requests

Difference between cumulative value at the same time

Workdoad
mwmthnd . Metrics
Generator Collector
Internal Metrics

‘
Configurations Metrics

——— — — ——— — — — —

Figure 2: System Architecture.
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System Architecture

v Metrics Collector : collect and process metrics
» External metrics (latency and throughput)

» Calculate the mean value of sampled result in 5 seconds

Figure 2: System Architecture.

hemory Pool

————————— — — —
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System Architecture

v" Recommender
> RL model2| output 2 20tA S S configuration= userOf| Al configuration modify request & =

bt , CDBO| 3l & configurations &X-&

> UserQ| confirm = &t

ot

Memory Pool

——— — — ———— — — — "

Figure 2: System Architecture.

16



System Architecture

v' Memory Pool
» Store the training samples
» Experience Sample: (s, r, a, S;.,) =2 Atransition
= s,: The state of the current database
= r;: The reward value calculated by reward function via external metrics
= a,: Knobs of the database to be executed

S+ . The database’s state vector after executing the configurations

\
I
I
I
I
|

——— — — ——— — — — —

Figure 2: System Architecture.
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3. Reinforcement Learning



RL notation in CDBTune

Variables Descriptions Mapping to CDBTune
S State Internal metrics of DBMS
a Action Tunable knobs of DBMS
r Reward The performance of DBMS
a Learning rate Set to 0.001
Discount factor Set to 0.99
w The weights of neural network Initialized to
Uniform(—0.1,0.1)
E Environment the tuning target An instance of CDB
U Policy Deep neural network
69 Learnable parameters Initialized to Normal(0,0.01)
o+ Actor, mapping state s; to action a; -
QH Critic, the policy u -
L Loss function -
y Q value label through Q-learning algorithm -

19



RL for CDBTune

Ag ent i : ' L N Metwork

- CDBTune -

: _ <Action>

Environment Performance Knohs

- An instance of CDBTune (MySQL) LR

m —

State [ Metics | i <

- Agent state (63 metrics) :

- 14 state values + 49 cumulative values
- State : buffer size, page size
- Cumulative : data reads, lock timeouts, buffer pool in pages, buffer pool read/write requests

Reward
- The difference between the performance at time t and t-1 or the initial settings (later)

Action
- Knob tuning operation

Policy

- The behavior of CDBTune in certain specific time and environment
20



Why Using RL?

v’ Search-based approach and the multistep learning2| ot Al E S 2517 2[5H
v 7ts5%t H =l sample 7HX| 1 &&= A.

Q-learning
v *% state 0| A 21t

= state SZt0|2tH, Q-table2 B2
state%% &7 o4&

Q(st,ar) «— (1 —a)Q(sp, ap) +a[r+y maxgq, ., Q(St+1, Ars1)] >

DQN

Q(s,a,w) = Q(s,a) » v Discrete?t € 112|F

- XA M, outputl| 7|7t K| %=
Moz Ztet

DDPG

21



Deep Deterministic Policy Gradient(DDPG)

DDPG S

Continuous action spaceg 7l 2|0 A] Actor-Critic

DDPG S

Deterministic Policy

ActionOf CHot M2 =WSIX| QLOF A Ltak O

DQN

Actor-Critic Method Value function approximation

o] § Zch

PG

Stochastic Policy

|IS5= =L

22



DDPG = PG(Continuous Action Space) + DQN(Experience Replay)
- Model Free & Off Policy, Actor Critic Algorithm

Knob Configurations: — Value
<knobn, Knobs, ..., Knobm> I

(Score)
Loss Guide

Ot pu
N _BBRR R
P e A
S e .
S QB QI -3 ase
Y= S Sy AN
SNe . 0 L)7128

o
fnput: Q0 - 0 et () e ()

Internal Metrics: l = p Knob Configurations Internal Metrics
<IM1, IMz, ..., IMn> (Action) [5tate)

Figure 4: DDPG for CDBTune.
Actor function : a; = u(s;|6")

v

Critic function : Q¥(s,a) = E, ., . [r(st, a;) + yQ”‘(sHl,,u(stH))]

Q-leaning (In critic network)
min L(09) = E[(Q(s, al6%) — ¥)?]

y =71(sg,a) + VQ”(5t+1:M(St+1)|9Q)

Q#(s,al6?)

Parameterized by 6°

23



Actor function : a; = u(s¢|6"%)
Critic function : Q#(s,a) = ]Ert:5t+1~E[r(St’ a;) + yQ“(sHl,,u(sHl))]

Q-leaning (In critic network)
min L(8?) = E[(Q(s, al8?) — y)?]

y =71(s¢,a) + VQ”(St+1:H(St+1)|9Q)

Policy Gradient (In actor network)
Vou] = E[VouQ(s, al6?)

]

$=5t,a= [(S¢)

= E[V,Q(s,al6%) Voru(s|6%)

S=St,a= U St

S=5¢

]



Seven main steps

[
|

Memory Pool

Knob Configurations: — Value
<kKnobn, Knobz, ..., Knobm=> I

[(Score)
Loss Guide

Cutput:

fnput: Q0 - 0 et () e ()

Internal Metrics: l = p Knob Configurations Internal Metrics
<My, IMz, ., [Mnz= (Action) (State)

(St»Te, Aty St41)

Figure 4: DDPG for CDBTune.

Step 1. We first extract a batch of transition (s, 1, a¢, st4+1) from the experience replay memory

25



Seven main steps

Knob Configurations: — Value
I [Score)

<Knob, Knobz, ..., Knobm:

Loss Guide

— e N =
. Foe

fnput: Q0 - 0 et () e ()

R Internal Metrics: l = p Knob Configurations Internal Metrics
v <|Ms, IMz, ..., IMn> St+1 (Action) [5tate)

Memory Pool

St, T¢,A¢, S
(St 7 @p, St41) Figure 4: DDPG for CDBTune.

Step 1. We first extract a batch of transition (s, 1, a¢, st4+1) from the experience replay memory

Step 2. We feed s, , to the actor network and output the knob settings a;,, to be executed at next moment

26



Seven main steps

Knob Configurations: — _I Value Vt+1

[(Score)

<Knob, Knobz, ..., Knobms

Loss Guide

s avasS— A

LI RO 0T -~ QD

s e s )l

R Internal Metrics: l [l > Knob Cenfigurations Internal Metrics
v <IM1, IMz, ..., IMn> at+1 (Action) [5tate)

Figure 4: DDPG for CDBTune.

Memory Pool

St+1

(St»Te, Aty St41)

Step 1. We first extract a batch of transition (s, 1, a¢, st4+1) from the experience replay memory
Step 2. We feed s, , to the actor network and output the knob settings a;,, to be executed at next moment

Step 3. We get the value (score) V,,, after sending s;,; and a’;,; to the critic network



Seven main steps

Knob Configurations: — _I Value V,t == th+1 + £,

<Kno, Knobz ..., Knobm= (Score)

Loss Guide

— e N =
.. Foe

fnput: Q0 - 0 et () e ()

R Internal Metrics: l = p Knob Configurations Internal Metrics
e <|Ms, IMz, ..., IMn> (Action) [5tate)

Memory Pool

St, T¢,A¢, S
(St 7 @p, St41) Figure 4: DDPG for CDBTune.

Step 4. According to Q-Learning algorithm, V,,, is multiplied by discount factor y and added by the value of reward
at time t, and now we can estimate the value of V', of the current state s;.



Seven main steps

Knob Configurations: — _I Value Vt

<Knob, Knobz, ..., Knobms (Score)

Loss Guide

Internal Metrics: l —

R B Knob Configurations) Internal Metrics
> <IMy, IMz, ..., IMa= as

(Action) (State) St

Memory Pool

St, T¢,A¢, S
(St 7 @p, St41) Figure 4: DDPG for CDBTune.

Step 4. According to Q-Learning algorithm, V,,, is multiplied by discount factor y and added by the value of reward
at time t, and now we can estimate the value of V', of the current state s;.

Step 5. We feed s; (obtained at the first step) to the critic network and further acquire the value V; of the current state

29



Seven main steps

- . 2
Knob Configurations: — Value L — V _ VI
<knob, Knobs, ..., Knobm:= I t ( t t)

[(Score)

Loss Guide
? G'L'.’.L"L'{Z .
3 " g4

() &6d
e ANy T
T Q800 QD
- < X<

'
e e ey o R

1 ‘ﬁﬁﬁzf‘i‘iﬂrﬁ. O 255
..-_-‘-'_ e ‘

CJ L)
I
= -

RoRe):

= __::s:.:,:--:iiu&

\1‘; —"H -E:;‘.' OO2

fnput: Q0 - 0 et () e ()

R Internal Metrics: l = p Knob Configurations Internal Metrics
v <IM1, IMz, ..., IMn> (Action) [5tate)

Memory Pool

St, T¢,A¢, S
(St 7 @p, St41) Figure 4: DDPG for CDBTune.

Step 4. According to Q-Learning algorithm, V,,, is multiplied by discount factor y and added by the value of reward
at time t, and now we can estimate the value of V', of the current state s;.

Step 5. We feed s; (obtained at the first step) to the critic network and further acquire the value V; of the current state
Step 6. We compute the square difference between V', and V, and optimize parameter 8¢ of the critic network by gradient descent

30



Seven main steps

an(S, a|9Q) | Vgu'u(swﬂ) Knob Configurations: — _I Value

<Knob, Knobz, ..., Knobms (Score)

a= u(st)

Loss Guide

2 )
fnput: Q0 - 0 et () e ()

R Internal Metrics: l = p Knob Configurations Internal Metrics
v <IM1, IMz, ..., IMn> (Action) [5tate)

Memory Pool

St, T¢,A¢, S
(St 7 @p, St41) Figure 4: DDPG for CDBTune.

Step 7. We use Q(s = s,, u(s;)|09) outputted by the critic network as the loss function, and adopt gradient descent
means to guide the update of the actor network gives a higher score for the recommendation outputted by the
actor network each time.

31



Reward Function

CDBTune2 DBA's tuning process= 223} reward functione T3 Ct. DBA's tuning process= CtS 1t Z Lt

(1) DBMSS| 27| 452 p,, DBMS?| & M58 p,0|2t1 BtCt,

_

(2) DBAZ} knob2 tuning®t 11, 50| D, 0| &|®, 45 ¥t AD,, Dy) & FFBCH.

(3) TuningO| &4 BCHE A2 HAESIX| 23}7| W20 i stepOl M A(D;, D) 2 A(D;, D;_)E A AFSHCL,



Reward Function

Throughput Latency
( Ty — To (
AT = < 0 AL = 4
T =Ty
Al = T, ALiseq =
\ t—1 \

Reward of Throughput and Latency

((1 + A¢0)” - 1)|1 + Arse—1l, B> 0
—((1 = D) = D)1 = Apsyal, A< 0

Final Reward

T':CTXTT-I_CLXTL
CT+CL=1




4. Experiment



Experiment

v' 4 Comparison
» CDBTune
» BestConfig : BestConfig: tapping the performance potential of systems via automatic configuration tuning
» OtterTune : Automatic Database Management System Tuning Through Large-scale Machine Learning

> DBA : 3 DBA experts who have been engaged in tuning and optimizing DBMS for 12 years in Tencent.



Experiment - Environment

v" Workload
» 3 Benchmark tools:
= Sysbench
= MySQL-TPCH
= TPC-MySQL
» 6 Workload:
= Read-only, write-only, and read-write workload of Sysbench
% 16 tables of which each contains about 200K records (about 8.5 GB) / # of threads is 1500
= TPC-H
% 16 tables (about 16 GB)
= TPC-C
% 200 warehouses (about 12.8 GB) / # concurrent connections to 32
= YCSB
% 35 GB data using 50 threads and 20M operations



Experiment - Environment

v DBA Data
» OtterTune needs high quality data
» DBA's experience data : Training data used on CDBTune =1 : 20

v' Setting

» PyTorch and Python tools including scikit-learn library Online Tuning Instances

, . . Table 1: Database instances and hardware configuration.
» Run on Tencent’s cloud server (Offline Training) 1 ‘ s

: AM (G disk (G
= 12-core 4.0 GHz CPU Instance RAM (GB) Disk (GB)
CDB-A 8 100
= 64 GB RAM CDB-B 12 100
CDB-C 12 200
= 200 GB disk CDB-D 16 200
CDB-E 32 300
v Expression CDB-X1 (4,12,32, 64, 128) 100
CDB-X2 12 (32, 64, 100, 256, 512)

» M_{training condition}—{tuning condition}

> Use 8 GB RAM training setting for 12 GB RAM online tuning: M_8G > 12G
v" Notes

v' Best result of recommendations of CDBTune and OtterTune

v' Give 50 steps in the experiment to BestConfig for it restarts the search each time (a lot of time)

v' Use priority experience replay to improve offline training performance

v Adopt parallel computing (30 servers) to reduce the offline training time



Experiment —-Time Consuming

v' Offline training time (only for CDBTune)

» 4.7 hours for 266 knobs

» 2.3 hours for 65 knobs

» # of knobs does not affect the online tuning time
v Online tuning time

> 5 steps 2 25 mins

Table 2: Detailed online tuning steps and time of CDBTune
and other tools.

Tuning Tools Total Steps Time of One Step (mins) Total Time (mins)

CDBTune 5 5 25
OtterTune 5 11 535
BestConhg 50 5 250

DBA 1 5316 316

38



Experiment — Varying Tuning Steps

v" Accumulated trying steps
» Fine-tune the standard model with limited steps
> 5 step 7t2A
v CDBTune 2 step =7 S7}20] tefM ds50| ZO0HE
v’ Better result in the first 5 steps in all cases
v' OtterTune keeps stable because:
» Supervised learning

» Regression

g COBETUne (RW)
== DBEA (RW)
i e OtterTune (RW)
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&
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t=1
k=3
=
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n T

- —

e e ¢ e ¢
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Figure 5: Performance by increasing number of steps
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Experiment — # of knobs (ordered)

v’ Sort 266 tunable knobs (maximum number of knobs that DBA uses to tune for CDB)
v' Both DBA and OtterTune rank the knobs based on their importance to the database performance

v' CDBTune can achieve better performance in all cases

v DBA and OtterTune decrease after # of knobs exceed a certain number

mpem CDBETune =i DBA OtterTune =i BestConfig mp== CDBTune == DBA OtterTune  w=fpm BestConfig
o

P =

21350 e A 1700

= - =

5 1100 W = vano ﬁmcm

g E_:Il[h‘.‘l

E_ﬂﬁﬂ g

T s00 S 650

a 8

S =y 20 40 80 B0 100 130 140 180 180 200 230 240 2;;, :;5 = =0y 20 40 &0 B0 100 120 140 160 180 FO0 230 240 260 66

Murnber of Knohs Nurmber of Knobs

8484 §

8200 § - -

Eam- Emﬁm-

400 g 42501

gmm- gﬂm.

= 3600 £ 501

o 32004 & 501 > . 5 - -
2E50 o = = = =

0 40 &0 B0 100 120 140 1E0 180 XD 320 240 360 IRE

Fli] a0 & Bl 100 130 140 160 180 FI0 320 240 60 66
Mumber of Knobs Number of Knobs

Figure 7: Performance by increasing number of knobs

Figure 6: Performance by increasing number of knobs
(knobs sorted by OtterTune).

(knobs sorted by DBA).
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Experiment — # of knobs (random)

v" Randomly selects different number of knobs
» 40 selected knobs must contain the 20 selected knobs from the precious one
v Performance is continuously improved while the number of knobs increasing
v Poor at the beginning
» A small number of selected knobs have a small impact on performance
v’ Stable at the end

» Later knobs will not greatly affect the performance

LG00

13001

1000

Throughput (Ixnfsech

CDBETune Throughput
v Use bellow techniques to accelerate the convergence: Mo e e w T e e w w0
v" Priority experience replay o —~e— CDBTune Latency |

v' Parallel computing

‘/ G P U Nurmber of Knobs
( ) T 16E0

1300, === CDOBTuUne lteration

= 1080

aratio

k=1
e JEd
2

£ 48
3
=

1B
o 20 Al &l Ed 104 120 144 160 180 X0 220 244 ZED  FRE

Murnber of Knobs
Figure 8: Performance by increasing number of knobs
(knobs randomly selected by CDBTune).



Experiment — Difference workloads

v' CDBTune achieves higher performance than OtterTune, BestConfig, and DBA

AN

CDBTune > OtterTune > BestConfig = learning-based method is more effective
v' OtterTune performs inferior to the DBA - Try-and-error samples instead of massive high-quality DBA’'s experience tuning

data MySQL Default CDB Default  ww OtterTune
m BestConfig s DBA s CDBTune

v' BestConfig > Limitations of search-based algorithm

20.0K

1600
o I 17.5K I
g0 150K
v' Workload”7} CHE0| et S =7 &2 Oet0|EHF0| 242 J'J0| E L} e S
l-él- 222 él}ﬂ.ﬂl{
> RW :innodb_write io_threds, innodb_purge threads I § 2000
. . = ?ﬂg 2503 - < _-_
> RO InnOdb—read—IO—threadS (a) RW (Throughput) (b) RW (99%-tile Latency)
» WO :innodb_write io_threds, innodb_purge threads gasoo % oo I
v Alarge negative reward (e.g., -100) if the instance crush during the tuning process 3 I I 4o
. 2 1000 .
£ wo | [ i i
. } RO (Throughput) d) RO (99%-tile Latency)
Table 3: Higher throughput (T) and lower latency (L) of 000 - oot ) ( i

ﬂ 8000

CDBTune than BestConfig, DBA and OtterTune.

-:fl‘—.:lﬂﬂf:l
Workload BestConfig DBA OtterTune %izzz . IlI
T L T L T L .

=N
o
(=1
(=1
(=]

£
=
=
=]

Q‘QLh -l

1:
=]

a B " el

BW T68.28% |51L65% T4.48% 1 891% T7T29.80% | 35.51% (&) WO (Throughput) (f) WO (99%-tile Latency)
RO T4215% |4395% 7T473% |1l66% T4446% | 23.63% Figure 9: Performance comparison for Sysbench RW, RO
WO T12866% |6135% T4657% |4333% To9L25% |59.27% and WO workload among CDBTune,MySQL&fault, BestCon-

fig, CDB default, DBA and OtterTune.




Experiment — Adaptability on Memory Size and Disk Capacity change

v' Memory size and disk capacity are the most two properties that users prefer to adjust

\/ CDB_A, CDB_X1 : CDB_C’ CDB_X2 % A'—-g- -CI)-l-O:I test Table 1: Database instances and hardware configuration.

Instance RAM (GB) Disk (GB)
» M_A - X1 (cross testing) OB A 5 m
— CDB-B 12 100
) CDB-C 12 200
» M_X1 > X1 (hormal testing) CDB-D 16 200
— CDB-E 32 300
A ) i . CDB-X1 (4,12 32 64 128) 100
v’ Strong adaptability in memory size and disk capacity CDB-X2 12 (32, 64, 100, 256, 512)
EEE BestConfig B DBA I CDETune M_{X)G={X)G maE BestConfig e DEA m CDBTune M_(X)G=(X)G
o CDB Defaulk W8 OtterTune EEE CDBTune M_BG—(X)G o CDB Default WS OtterTune  mEE CDBTune M_200G-(X)G
4o | o 400a 7 1
£ 12000 i 3500 -
£ 10000 % 3p00
o
2 & 2000 -
it oJ1all o) = il i
= 2 1500-
£ oo e HCRARN B oot 1| || | 0 B SNEN B |
M_HGal M dG=126 M_HG~d2G M_dE—~5ac M_BG-1280 M_F0G=32G M 200G=6AG  M_Z00G-100G  M_200G-256G  M_200G-513G
B00 | ' BOD .
£ oo
i @ 650 |
% 5001 = 600
& 4001 # 550
£ 300/ 5
=l [T . = [ .. il
M_8G-40 M_BG=+12G M_BG=+32G M_BG—+640 M_Bh-+1280G M_20DG=32G M_ZDDG<540 M 20061005 M_200G=2560 M 20055120
Figure 10: Performance comparison for Sysbench WO Figure 11: Performance comparison for Sysbench RO work-
workload when applying the model trained on 8G memory load when applying the model trained on 200G disk to (X)G 43

to (X)G memory hardware environment. disk hardware environment.



Experiment — Adaptability on workload change

v' CDB-C instance At&

» M_RW - TPC-C (cross testing)

» M_TPC-C - TPC-C (normal testing)
v’ Strong adaptability in workload

mE BestConfig BN DBA s CDBTune M_TPCL-TPC-C
0l CDB Default WSS OtterTune  EEE CDBTune M_RW=TPC-C

(]
§ 1400 — 3000 I
= 1200
5 I E 2500
- e = 2000
3 80O 3
g s
o 400 g 1000
£ 200 500
o 0

Figure 12: Performance comparison when applying the
model trained on Sysbench RW workloads to TPC-C.
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Experiment — Summary

v’ CDBTune
v' Limited training data
v’ Strong adaptability in environment and data changes

v" RL - simulate human brain, learn towards an optimizing direction
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5. GitHub



Github:

H Al A https://github.com/HustAlsGroup/CDBTune
GitHub - &5

Build steps

1. Put the project AutaTuner of the training model in the home directory of the user cheng of
the two servers, that is, the directory is: /home/cheng/AuteTuner (please keep AutoTuner

CDBTune Architecture

. Install sysbench1.0 on CDBTuneT, and refer to the installation methad: Ubuntu install
sysbench1.0

™~

o

Install mysql5.6 on CDBTune2 (note the version, it is 5.6!Y), the initial root password is set
to 123456. After the installation is complete, use the command sudo service mysq| start to
start the mysql service

How to completely delete mysql reference: Ubuntu16.04 completely delete mysq|

How to install mysql5.6 reference: Ubuntu install mysqls.6

4.Log in to mysql on CDBTune2 and create a database named sbtest (the name can be
whatever you want, but you need to modify the database names of the two scripts in the
source code)

I

. Enable remote access permissions for the root user of mysgl.

cdbtune-1

How to enable remote access permissions for the root user of mysq| reference: mysql

enable remote access permissions for root
-
6. In mysql, use the command:

innodb_metrics where status="enabled" ord

name;

Then use the following command to turn on the adaptive_hash_searches_btree vector:

'
\ 4

global inncdb_monitor_enable - “adaptive_hash_searches_btree”;
/home/cheng/AutoTuner/scripts/prepare.sh, first use vim to modify the script_path in
y O n . prepare.sh to: "/usr/share/sysbench/ "(Note that there is a "/" at the end). Then use the
. (Currently in the /home/cheng/AutoTuner/scripts directory) 8 tables are built for the sbtest
database of CDBTune2, each with 1,000,000 data (this step may take a long time, just wait
. . . .
Mysql 5.6
.
Net k traini &
9. Install pexpect on CDBTune2 and execute the following command:

Just turn on the counter. The specific counter opening/closing/resetting can refer to: How
b untu '] 6 04 o opnese st e o g
U :
Python 2.7
:
patiently).
pip install -r requirements.txt --user
: :
active stress testin g/

Ubuntu 16.04
. 7. Use sysbench on CDBTune1 to initialize the sbtest of CDBTune, using the script
sh prepare.sh read 102.168.110.11 3396 123456
S b h 1 O 8. For both machines, install requirement.txt (use pip to install, note that it is not pip3). First
ys e n C . enter the project home directory, namely /home/cheng/AutoTuner, and then execute the
D a ta b a S e S e rve r If an error is reported, please refer to the error report to resolve.
0. Execute the command in the /home/cheng/AutoTuner/server directory of CDBTune2:

sh ./start_server.sh

1. Enter the command on CDBTune2: netstat -an | grep 20000 to see if the startup is
successful

2. Wiite a start_train.sh script in CDBTune1's /home/cheng/AutoTuner/tuner based on
CDBTune2’s start_server.sh script. The content is as follows:


https://github.com/HustAIsGroup/CDBTune

GitHub

- 6702] Mysql knobs tuning
« Knobs' name
« Knobs default values
« [min, max, default]

CDBTune/environment/knobs.py

ENOB DETAILS =




GitHub - train.py

* Initial external metrics: « Action:
 Throughput: 2390.496 « 6712 nj2tojE gt ME
« Latency: 4.201 - 0~1 AO|2 &¢
 Query Per Second: 38247.985 « Of: knob EH2[7} [1, 32], action ££0|

0.5€ I knob ZtE 12.




GitHub — evaluate.py Throughput % Latency &M ™E L
10.00% 8 459
8.00% 6.86%
e 2N 6.00%
- train.py = 37l episode 4,00%
- evaluate.py > max_step= 5 2.00%
0.00%

tps_inc lat_dec

* Initial external metrics:
« Throughput: 1839.634
« Latency: 5.521
« Query Per Second: 29434.192

« DDPG result:
« Throughput: 1965.819
« Latency: 5.056
« Query Per Second: 31453.148




Q&A



Appendix - 1

[ Model-Free Algorithm 3Hst 9]

Fart

01

Base Knowledge

v Model-Free Learning2 Environmentd| CH3| 220§
Action®]| [}2 Next State2} Next Reward® +=S%oz W&

v Environment® 228 2 Exploration(&&)& &% Trial and Error2
Policy Function2 A} st A7 0 &

v 0|24t 2’H 8 S5l Expected sum of future reward& Z|CY 2 S}=
Policy Functiong 5t %} &

52



Thanks!
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